If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+10p-13=4
We move all terms to the left:
3p^2+10p-13-(4)=0
We add all the numbers together, and all the variables
3p^2+10p-17=0
a = 3; b = 10; c = -17;
Δ = b2-4ac
Δ = 102-4·3·(-17)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{19}}{2*3}=\frac{-10-4\sqrt{19}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{19}}{2*3}=\frac{-10+4\sqrt{19}}{6} $
| 13+2x=31 | | 5x3^3x=60 | | 105x=180 | | 3x-12=78-2x | | T=-10n+8 | | 15^3x=60 | | 6(2k-3)=-48 | | 150x+900=2100 | | 2(1-x)=16-(2-x) | | 18y+3=15y | | 171=30-y | | 3p=18p+12 | | -5(-2y+9)=-25 | | (−x2−4x−5)+(−x2+8x+8)=0 | | 4v^2-7v+1=0 | | 2x+4=3-2 | | 60°+35°=x | | 1/2n-15/4n=91/16 | | -1(4y+8)=-20 | | x-8=12.5. | | 155+155+155+155+x+x=720 | | 12+5x=5x+4 | | 4x+5x=5x+4 | | x+1.88=9.26 | | 450/8=x/20 | | |9x-17|=10 | | x/450=8/20 | | -3d=-2d+3 | | r/9+12=7 | | 14x-3(5x-8)=31 | | 17x-(2x-4)=79 | | 6(3y+2)+4y=210 |